Theoretical study on dye-sensitized solar cells using graphene quantum dot and curcumin, pahthalocyanine dyes

Author:

Abed Hussein Hakim,Al-Aaraji Noor Al-Huda,Salman Jasmin M.,Abduljalil Hayder M.,Al-Seady Mohammed A.

Abstract

Abstract In the present study, the nanostructures from curcumin dye, Phthalocyanine (Pc) dye and graphene quantum dot GQD (C30H14), as well as, the nanocomposites which include (GQD/ curcumin, 2GQD/ curcumin, GQD/ Pc and 2GQD/ Pc) are considered to investigate the performances in solar sensation. The geometrical optimization and optical properties of the studied structures are done using the density functional theory DFT and time dependent TDDFT method with B3LYP/6-31G level. Examining the evaluated structures as a sensitizer of dye-sensitized solar cells (DSSCs) by taking the TiO2 electrode and I-/I-3 electrolyte, it was found that the HOMO and LUMO energy levels, charge spatial separations, energy gap, and light harvesting efficiency for GQD/ Pc nanocomposite satisfied the requirements as a sensitizer. Therefore, it is concluded that the GQD/ Pc nanocomposite indicates an equilibrium among the multiple essential factors and it is predicted that it can be preferred as a promising sensitizer in the DSSCs compared with others structures.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3