Enhanced Removal of Hydrocarbons from Crude Oil Sludge through Phytoremediation with Biosurfactant-producing Rhizobacteria

Author:

Sharuddin Siti Shilatul Najwa,Abdullah Siti Rozaimah Sheikh,Hasan Hassimi Abu,Othman Ahmad Razi,Al-Baldawi Israa Abdulwahab

Abstract

Abstract Discharge of crude oil (or its products) during the extracting, refining, and transporting into the environment have caused serious environmental distress due to their highly hydrophobic resistance, and persistence in nature and very difficult to be remediated from the environment. Therefore, an environmentally conscious approach to enhance the bioavailability (or solubility) of petroleum hydrocarbon pollutants in soil involves the utilization of biosurfactants. Biosurfactants play a crucial role in enhancing the desorption and solubilization of petroleum hydrocarbons, facilitating their assimilation by microorganisms. This research investigated the application of biosurfactant supplementation derived and purified from rhizobacteria of Scirpus grossus, which are capable of producing biosurfactants and degrading hydrocarbons, in the context of phytoremediation. The crude oil sludge used in this study was obtained from an industrial area containing 56,600±3;900 mg/kg of total petroleum hydrocarbon (TPH). The crude oil sludge was inoculated with biosurfactant, sodium dodecyl sulfate (SDS) as commercial surfactant and only with the presence of S. grossus in the vegetated tanks and monitored for 90 days in a greenhouse. The results indicated that the growth of S. grossus with the addition of biosurfactant was improved and new saplings were produced. After a 90-day exposure period, the removal efficiency of TPH from the soil demonstrated significant increases, reaching 90.3%, 84.1%, and 73.7% when treated with biosurfactant+S. grossus, SDS+S. grossus, and S. grossus only respectively. These percentages were notably higher compared to the non-planted control crates (CC) where the removal efficiency was only 17.9%. These results provide evidence that the introduction of biosurfactant through inoculation can elevate the bioavailability of organic pollutants, consequently augmenting their microbial degradation in the soil.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3