Engineered electrocoagulation reactor for the removal of E. coli from wastewaters

Author:

Al-Imara Eman A.,Al-Jaryan Rand L.,Jawad Sabrean F.,Kareem Mohanad M.,Mubarak Hayfaa A.

Abstract

Abstract As a consequence of natural pollution, water and sewage are polluted in many nations across the globe. Especially in poorer countries, sewage treatment and disposal practices are often substandard. Throughout many limited-income nations, the poor economic condition and absence of resources assistance severely hamper the planning and application of novel water and sewage systems. This has resulted in a rise in the number of bio-contaminants in the environment. The objective of this study is to use electrocoagulation as a low-cost method to remove or lower the amount of bio contaminant in sewage. By transmitting a voltage between the two conductors, disinfectants are generated in place. Sewerage samples were obtained at the Kerbala wastewater treatment plant, which is situated south of Kerbala, Iraq. In this work, steel plates were utilized to create coagulants. Furthermore, the effect of many factors on the performance of the electrolysis device was studied, namely spacing among electrodes and current density. The analysis indicates after 40 min of irradiation employing electrodes spaced 5mm apart and a current intensity of 2 mA/cm2, the E. coli bacteria as a biocontrol agent were killed. Furthermore, the results demonstrated that an initial pH value of 6.0 is appropriate for bio-contaminants removal utilizing electrocoagulation.

Publisher

IOP Publishing

Subject

General Engineering

Reference64 articles.

1. Using LARS-WG model for prediction of temperature in Columbia City, USA;Zubaidi,2019

2. Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study;Zubaidi;Water,2020

3. A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach;Zubaidi Salah;Water,2020

4. A novel methodology to predict monthly municipal water demand based on weather variables scenario;Salah;Journal of King Saud University-Engineering Sciences,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Treatment approaches for bio-contaminants in organic wastes;Fate of Biological Contaminants During Recycling of Organic Wastes;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3