Quantitative assessment of white spot (Ramularia tulasnei) disease severity of strawberry based on hyperspectral imaging

Author:

Cheshkova A F

Abstract

Abstract This study examined strawberry white spot disease severity using different hyperspectral imaging analyzing methods. The plant leaf images were classified by spectral angle mapper (SAM), by vegetation indices (RENDVI, GNDVI, MCARI) thresholds and by principal component analysis (PCA) method. The SAM method showed the overall accuracy 84% when classifying three types of visual symptoms of the disease.

Publisher

IOP Publishing

Subject

General Engineering

Reference6 articles.

1. Plant Phenomics: Fundamentals, Hardware and Software Platforms and Machine Learning Methods;Demidchik;Fiziologiya rastenij,2020

2. A Review of Advanced Technologies and Development for Hyperspectral-Based Plant Disease Detection in the Past Three Decades;Zhang;Remote Sens.,2020

3. Hyperspectral Sensors and Imaging Technologies in Phytopathology: State of the Art;Mahlein;Annu. Rev. Phytopathol,2018

4. The spectral image processing system (SIPS) interactive visualization and analysis of imaging spectrometer data;Kruse;Remote Sens Env.,1993

5. Methods of detection of diseases on wheat crops according to remote sensing (overview);Dubrovskaya;Siberian Herald of Agricultural Science,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3