Monitoring Groundwater Depletion Due to Drought using Satellite Gravimetry: A Review

Author:

Mohamad N,Ahmad A,Din A H M

Abstract

Abstract Groundwater plays a vital role in the global water cycle as a source of water for human use in daily life. The problem of groundwater depletion attracts researchers to understand the phenomenon of terrestrial water storage (TWS) and the primary technique used to monitor changes in groundwater mass in the subsurface. Accurate quantification is subtle due to the weakness of gravity measurement methods, which cover a wide range with high precision. A global evaluation of improvements in groundwater storage used a calculation tool that may involve temporal differences in TWS. The Gravity Recovery and Climate Experiment (GRACE) and the GRACE Follow-On (GRACE-FO) satellite missions were able to monitor changes in water mass in the basin and calculate changes in water levels by measuring gravity variations and quantifying groundwater tables at 1-micron precision. This paper aims to discuss GRACE, GRACE-FO and hydrological variables in the monitoring of groundwater depletion during the drought season. This paper presents an estimation technique using satellite gravimetry and hydrological methods, as well as a study of several case studies in central Amazon (Brazil), Murray-Darling (Australia) and Mongolia Basin. Previous observations, including TWS-hydrological variables, trends in groundwater depletion and drought intensity, have been discussed as a vital outcome of the paper as a whole.

Publisher

IOP Publishing

Subject

General Engineering

Reference46 articles.

1. What is groundwater and what does this mean to fauna?–An opinion;Schmidt;Limnologica,2012

2. Groundwater hydrology edition;Todd,2005

3. Groundwater: the processes and global significance of aquifer degradation;Foster;Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,2003

4. Surface water–groundwater interactions between irrigation ditches, alluvial aquifers, and streams;Fernald;Reviews in Fisheries Science,2006

5. Accuracy of scaled GRACE terrestrial water storage estimates;Landerer;Water resources research,2012

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3