Performance of Different Classifiers for Marine Habitat Mapping using Side Scan Sonar and Object-Based Image Analysis

Author:

Rusmadi Raihanah,Hasan Rozaimi Che

Abstract

Abstract Acoustic sonar techniques have been one of the successful underwater mapping alternatives for identifying the seafloor features. The integration between the technique and classification analysis can produce detail map of the seafloor. Among these sonar technologies, side-scan sonar (SSS) is one of the tools for underwater mapping that can provide high spatial resolution seafloor mosaic which is presented in greyscale level. However, before it can be used for the coral reef marine habitat mapping, it is essential to properly assess its performance and quantify the amount of information that can be extracted. The objective of this study is to determine the accuracy of habitat maps derived using side scan sonar data, Object-based Image Analysis (OBIA) and five different classifier algorithms; Support Vector Machine (SVM), Random Forest (RF), k-Nearest Neighbour (k-NN), Decision Tree, and Bayes. This study utilized side-scan sonar model Klein system 3000 which operated at 100kHz combined with video data that was conducted in shallow water (depth > 10m). First, eight (8) texture layers were derived from side scan sonar mosaic using GLCM technique. Then, the GLCM layers of texture features were reduced using Principal Component Analysis (PCA) and analysed to seek for the most contributed texture layers. A total of 80 samples were derived which consist of four (4) classes; coral, sand, silt and mud. The result shows that the Support Vector Machine (SVM) method produced the highest accuracy which is 81.25% followed by k-Nearest Neighbours (k-NN), Random Forest (RF), Decision Tree and Bayes (68.75%, 66.25%, 57.5% and 45% respectively). The used of OBIA with SSS data offers a promising method to map marine habitats for a better understanding of spatial distribution and monitoring habitat changes in the future.

Publisher

IOP Publishing

Subject

General Engineering

Reference32 articles.

1. Assessing real progress towards effective ocean protection;Sala;Marine Policy,2018

2. Airline flight paths over the unmapped ocean;Smith;EOS,2017

3. High-resolution underwater mapping using side-scan sonar;Burguera;PloS one,2016

4. Using Low-Cost Side-Scan Sonar For Benthic Mapping Throughout The Lower Flint River, Georgia, Usa;Kaeser;River Research and Applications,2013

5. Management of marine ecosystems;Herbert,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3