A numerical study on the effect of spanwise installation of vortex generators on Francis runner blades

Author:

Kayastha Atmaram,Neopane Hari Prasad,Dahlhaug Ole Gunnar

Abstract

Abstract Hydro turbine operation far off from its best efficiency point introduces vortices and swirl that detaches flow from the blade surface. This break-off of flow accounts to loss in hydrodynamic lift accompanied by pressure fluctuations and vibration that leads to poor performance and mechanical failure of the turbine blades. Vortex generators (VGs) are efficient passive devices deployed to enhance aerodynamic lift of wind turbine blades and aircraft wings and can improve hydrodynamic lift on turbine runner blades as well. This study aims to investigate on the possibility of installation of VGs on the runner blade at leading edge, midspan and trailing edge of the runner blade. The study is carried out on a model Francis turbine developed at Waterpower Laboratory, NTNU. The numerical study is mainly focused on improving performance of the turbine at low speed as well as at the best efficiency speed. The operating head selected for the study is 11.94 m and the speed of the turbine is varied from 233 rpm to 433 rpm at an increment of 25 rpm. The turbine is simulated at different positions of guide vanes and hydraulic performance is calculated and the results of the analysis are compared with reference case without VGs. The results at deep-part load show major improvement in runner efficiency with increment in values up to 4%. The core purpose of the research is to develop effective techniques to operate traditional turbine runner at variable speed with cost-efficient minimal modifications in the geometry of the runner blades.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3