Predicting Non-Newtonian Fluid Electric Submersible Pump failure using Deep Learning and Artificial Neural Network

Author:

Okoro Emmanuel E.,Sanni Samuel E.,Okigbo Amarachi,Adeyemi Fisayo,Emetere Moses E.,Obomanu Tamunotonjo

Abstract

Abstract The monitoring of electric submersible pumps (ESPs) is essential for optimal petroleum artificial lifting operations. Most ESP research are aimed at operation improvement and optimization of the centrifuge multi-stage pump motor and the load that the pump has to discharge which is a function of the pumps mechanical properties and characteristics, liquid compositions, pressure and temperature. ESPs failure often lead to oil production losses or “oil deferment” which affects revenue for all the parties involved. Also, pulling the ESP out of the wellbore of interest, requires mobilization of a rig because it is installed several hundred meters down the wellbore. To prevent these loses, a predictive approach is needed to avert these scenarios. In the current decade, machine learning algorithms studies have spurred real- time technologies research interest due to their abilities to predict future outcomes using already existing data sets. This study presents a predictive approach for Electric Submersible Pump failure during artificial lift operations. The study creates an “algorithm” that helps to predict via Machine learning, the failure of an ESP with the assumption that failure is usually caused by pressure build-ups. A deep learning model for predicting ESP failure was proposed and artificial neural network was used in developing the suggested model. Based on the outcomes of this study, it can be concluded that the selected AI algorithm and its characteristics, are suitable for applications in detecting ESP failure before it happens using upstream-data.

Publisher

IOP Publishing

Subject

General Engineering

Reference20 articles.

1. Experimental modal analysis of electrical submersible pumps;Minette;Ocean Engineering,2016

2. A Reserve estimation using Decline Curve analysis for Boundary-Dominated flow dry gas wells;Okoro;Arabian Journal for Science and Engineering,2019

3. A review on gas well optimization using production performance models – A case study of Horizontal Well;Igwilo;Open Journal of Yangtze Gas and Oil,2018

4. Simulation model of ESP well system efficiency;Yao;China Petroleum Machinery,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3