Effects of Water Absorption on Mercury Contamination in Fiberbank Sediments using X-ray Fluorescence Spectrometer

Author:

An Siwen,Zeeshan Faisal,Norlin Börje,Thungström Göran

Abstract

Abstract A large amount of contaminated cellulose and wood fibers were emitted directly onto the seabed by the pulp and paper industry before the year of 1970. This fiber-rich sediment contains concentrations of hazardous substances that cause environmental problems. Mercury (Hg) in the fiber sediment is a worldwide threat because it can bioaccumulate in the aquatic ecosystem and eventually affect human health. X-ray fluorescence (XRF) analysis is an elemental analysis method for earth materials, which is rapid and requires minimal sample preparation. However, for in-situ XRF analyses, constraints in the measurement conditions will strongly affect the measurement sensitivity and accuracy, such as the scattered background and the water content surrounding the sample. In this work, we showed that applying an X-ray beam filter foil, optimized by using the material absorption edge, can improve the sensitivity of the XRF spectrometer system for Hg determination. Furthermore, the influence of water content in XRF measurement for Hg contamination analysis was investigated. The attenuation coefficient in water was determined by simulation of water layer with varying thickness using a Monte Carlo simulation code. The measured intensity for Hg was decreased exponentially as the water thickness increase, as expected. We propose a method to correct the attenuation in water with XRF analysis and we expect that these findings can contribute to an accurate in-situ Hg detection experiment.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3