Sediment erosion in the labyrinths of Francis turbine: A numerical study

Author:

Gautam Saroj,Acharya Nirmal,Chitrakar Sailesh,Neopane Hari Prasad,Iliev Igor,Dahlhaug Ole Gunnar

Abstract

Abstract Development of new hydropower projects in Himalayan regions aims for the efficient performance of the turbine with lesser operation and maintenance cost. Over the past two decades, significant efforts have been made to improve the sediment handling capabilities by the turbine components. In the case of Francis turbines, the design of guide vanes and runner blades were focused on the past to improve the sediment resistivity. However, other components of these machines were not studied from the perspective of sediment erosion. The present work aims to study the sediment erosion in the labyrinth sealings of a prototype Francis turbine, having serious erosion problems. Upper labyrinth sealing and bottom labyrinth sealing were modelled by developing a reference case and the erosion wear in these regions were examined numerically. The flow leaving the gap between stationary guide vanes and the runner enters the top and bottom labyrinth seals. While sediment flows along with the clean water these seals get heavily eroded. The results from the numerical investigation show a distinct pattern of erosion locations in the labyrinth sealings that is similar to the field observation.

Publisher

IOP Publishing

Subject

General Engineering

Reference15 articles.

1. Sediment erosion in low specific speed francis turbines: A case study on effects and causes;Gautam,2020

2. The effect of sediment characteristics for predicting erosion on Francis turbines blades;Neopane;Int. J. Hydropower Dams,2012

3. Study of the simultaneous effects of secondary flow and sediment erosion in Francis turbines;Chitrakar;Renew. Energy,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical study of erosion on labyrinth seals of Francis turbine;Journal of Physics: Conference Series;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3