Artificial Intelligent For Rainfall Estimation In Tropical Region : A Survey

Author:

Mardyansyah R Y,Kurniawan B,Soekirno S,Nuryanto D E,Satria H

Abstract

Abstract Rainfall monitoring in real-time is a mandatory in tropical areas such as Indonesia. As a country with various topographical conditions ranging from low-lying urban areas, highlands, to mountainous valleys, Indonesia is prone to hydrometeorological disasters in the form of flash floods and landslides. The strategic geographical position at the equator, between the Pacific and Indian oceans, and surrounded by vast oceans, combined with various natural phenomena related to the dynamics of the atmosphere and the ocean, makes high-density rainfall observations indispensable for both disaster mitigation and climate monitoring. As a vast tropical and archipelagic country, Indonesia currently has around 1000 automatic rainfall sensors and still requires more sensors to increase the spatial resolution of the observation network. Increasing the density of the observation network using both rain gauges and weather radar poses a problem of high operational costs. Therefore, several alternative rainfall observation systems are required. In the last decade, there have been several studies related to rainfall measurements using artificial intelligence from various meteorological variables, including the exploitation of microwave signals from radio telecommunications links, both terrestrial and satellite using high frequency bands. In this survey paper, we review and discuss research articles related to rainfall estimation using state-of-the-art methods in artificial intelligence using meteorological observation data, remote sensing, terrestrial and satellite microwave communication links. In conclusion, we present several future research challenges that can be applied to increase the density of rainfall observation networks.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3