The climate change effects on agricultural drought in the Be River Basin

Author:

Sam Truong Thao,Nhi Pham Thi Thao,Mai Nguyen Thi Huynh,Linh Do Quang,Loi Pham Thi

Abstract

Abstract Drought is one of the extreme weather events that has been occurring with increasing frequency and complexity as well as having negative effects on water resources and agricultural production. The focus of the present study is to investigate the climate change effects on agricultural drought in the Be River Basin. The SWAT model was applied to simulate the soil moisture content and Standardized Soil Water Index (SSWI) was utilized to estimate the characteristics of agricultural drought. In addition, the future climate conditions for the three periods (2022–2040, 2042–2060, and 2062–2080) were generated by the delta change method based on the outputs of five global climate models. The results show that agricultural drought is anticipated to increase in the frequency, intensity, and duration (up to 168.82%, depending on time and emission scenarios). Moreover, drought events and water shortage in the dry season tend to be more likely to happen soon in the Be River Basin. These results are consistent with the changing trends of related soil moisture. Besides, the results contribute reliable scientific evidence to help managers and policy makers having appropriate plans in the future.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3