A review and evaluation of thermal conductivity model of compacted bentonite and its mixture

Author:

Ye W M,Shao C Y,Chen L

Abstract

Abstract The thermal conductivity of bentonite plays a crucial role in analyzing the heat transfer process and determining the temperature field distribution within deep geological repositories. Despite considerable efforts in modeling the thermal conductivity of compacted bentonite and its mixtures, a comprehensive synthesis of these studies has not been previously undertaken. This research aimed to thoroughly review predictive models for the thermal conductivity of compacted bentonite and its mixtures, assessing their performance against a substantial dataset comprising 495 measurements of GMZ and MX80 bentonite. Through a systematic compilation and evaluation of seven models for compacted bentonite and three models for bentonite mixtures, the study identified TC2008 and LC2016 as the most accurate models for GMZ and MX80 compacted bentonite, respectively, whereas PT2021 emerged as the superior predictor for GMZ and MX80 bentonite mixtures. This exploration revealed the absence of a single, universally accurate model capable of predicting the thermal conductivities across all bentonite variants, highlighting the necessity for researchers to judiciously select the most fitting model for predicting the thermal conductivity of bentonite. Furthermore, we expressed the inherent limitations in current thermal conductivity models for compacted bentonite and its mixtures, and proposed directions for future inquiry in this domain.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3