A novel CFD-DEM coupling method with moving boundary for simulating one-dimensional consolidation test

Author:

He J H,Li M G,Chen J J,Xiao X

Abstract

Abstract The conventional CFD-DEM coupling method fails to dynamically modify the position of the drainage boundary during the simulation of one-dimensional consolidation tests (1d CT), resulting in inaccuracies in the numerical results. In this study, a novel CFD-DEM coupling method with moving boundaries is proposed to simulate 1d CT where the fluid boundary adaption and internal mesh reconstruction are implemented with reference to the real-time morphology of the consolidation specimen. Additionally, the convective terms in Navier-Stokes equations are modified to account for the moving drainage boundary and the equation of state (EOS) is introduced to consider fluid compressibility. A series of 1d CTs based on the traditional fixed boundary and the moving boundary are subsequently conducted for comparison. Moreover, the influence of fluid compressibility and mesh coarseness on the consolidation characteristics is briefly discussed. The proposed method is verified to serve well in revealing the underlying microscopic mechanism of the Mandel-Cryer effect and complementing the traditional consolidation theories.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3