Evaluation of Machine Learning approach in flood prediction scenarios and its input parameters: A systematic review

Author:

Maspo Nur-Adib,Bin Harun Aizul Nahar,Goto Masafumi,Cheros Faizah,Haron Nuzul Azam,Mohd Nawi Mohd Nasrun

Abstract

Abstract Flood disaster is a major disaster that frequently happens globally, it brings serious impacts to lives, property, infrastructure and environment. To stop flooding seems to be difficult but to prevent from serious damages that caused by flood is possible. Thus, implementing flood prediction could help in flood preparation and possibly to reduce the impact of flooding. This study aims to evaluate the existing machine learning (ML) approaches for flood prediction as well as evaluate parameters used for predicting flood, the evaluation is based on the review of previous research articles. In order to achieve the aim, this study is in two-fold; the first part is to identify flood prediction approaches specifically using ML methods and the second part is to identify flood prediction parameters that have been used as input parameters for flood prediction model. The main contribution of this paper is to determine the most recent ML techniques in flood prediction and identify the notable parameters used as model input so that researchers and/or flood managers can refer to the prediction results as the guideline in considering ML method for early flood prediction.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3