Experiences and preliminary results of geophysical methods on historical statues

Author:

Vagnon Federico,Comina Cesare,Canepa Marie Claire,Bovero Alessandro,Giraudo Giuseppe

Abstract

Abstract In recent years, geophysical applications have been significantly grown in rock mechanics field due to their versatility and reliability as diagnostic and/or monitoring tools. Since these methodologies are mainly non-invasive, they can be used for the investigation and characterization of the internal structure of historical artworks or for the monitoring of built cultural heritage, where the non-destructive feature is an indispensable prerequisite. Commonly, the artworks material properties are unknown or strongly altered due to time and physical/chemical agents. Moreover, their nature (mineralogic and petrographic) and origin (in terms of places where the material was exploited) is uncertain and difficult to allocate. Among the available geophysical techniques, seismic methods are useful for detecting the thickness or position of weathered layers, for estimating the physical properties of different materials and for providing information about cracking and degree of fracturing. In this paper, we present some experiences and preliminary results of geophysical characterization of two Tritons statues, discovered in the garden of the Royal Palace of Venaria (Piedmont Region, Italy). The statues were originally part of the Fountain of Hercules, destroyed in the 18th century during the redevelopment works of the Palace. Ultrasonic pulse velocity measurements were performed on each portion of the statues and 3D-imaging of the apparent P-wave velocity were carried out. The performed geophysical investigations were aimed at defining the overall material quality and detecting possible sectors with low resistance properties that might interfere with the coring operations, necessary for the reassembly of the statues. Results of these surveys were also useful for setting up a 3D-FEM model for simulating the material behaviour through an analysis of the forces and loads involved.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3