Predicting the geological condition beyond the tunnel excavation face using MSP monitoring data and LSTM algorithm

Author:

Lee Je-Kyum,Lee Sean Seungwon

Abstract

Abstract The ground conditions beyond an excavation face, especially discontinuities in rock masses, have a significant influence on tunnel construction. However, the actual ground conditions observed during tunnel construction are often different from the ground conditions predicted in the geotechnical site explorations carried out in the design stage. Changes in ground conditions may require alterations in tunnel design, leading to substantial disruptions in the construction schedule and budget. In this regard, accurate ground evaluation prior to the design and construction stages are essential for successful tunnel construction projects. Machine learning models have been developed in order to evaluate the condition of rock discontinuities within 50 m of the tunnel face. Machine data (rotational pressure, feed pressure, and drilling (advance) speed) obtained from a large boring hole machine, called MSP, at an NATM construction site in a granite formation located in South Korea were logged, and the actual ground Discontinuity Score (DS) was appraised by analysing internal bore hole images taken after drilling. Then, the LSTM algorithm was applied to develop the machine learning model to determine DS based on the logged machine data. DS was most accurately predicted when the drilling speed was included in the input data, whereas those cases using only the rotational and feed pressure in the input data showed low prediction accuracy. Therefore, the drilling speed seems to have a higher correlation than hydraulic pressure with regard to ground conditions, including discontinuities. Once additional data is collected from various tunnel sites, the machine learning model could be further enhanced to become more robust and provide solutions to various engineering problems.

Publisher

IOP Publishing

Subject

General Engineering

Reference12 articles.

1. Rock Classification Prediction in Tunnel Excavation Using CNN;Kim;Journal of the Korean Geotechnical Society,2019

2. A Study on Automatic Classification of Characterized Ground Regions on Slopes by a Deep Learning based Image Segmentation;Lee;Tunnel and underground space,2019

3. A feasibility study on application of a deep convolutional neural network for automatic rock type classification;Pham;Tunnel and underground space,2020

4. Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning;Chen;International Journal of Mining Science and Technology,2021

5. Determination of compressive strength of rock in situ of in test bloacks using diamond drill;Tsoutrelis;International Journal of Rock Mechanics and Mining Sciences,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3