Abstract
Abstract
Numerical solution is presented for light scattering from free-standing periodic arrays of disks made of noble-metal. Using the generalized boundary conditions of the surface impedance type, we formulate the boundary value problem into a set of integral equations for unknown electric and magnetic current densities defined over the circular area. Employment of the method of moments allows us to solve the integral equations and give the expansion coefficients of the current densities, from which we can find reflected, transmitted, and absorbed powers. Dependence of the powers on the array parameters and wavelength is discussed in detail from the viewpoint of grating resonance.