Segmentation of Enhalus acoroides seagrass from underwater images using the Mask R-CNN method

Author:

Pamungkas S A,Jaya I,Iqbal M

Abstract

Abstract Seagrass is a Spermatophyta plant that has many roles, including as a primary producer in the food chain in the waters. Monitoring of seagrass meadows and conditions needs to be done in order to achieve a healthy marine ecosystem. The steps taken in monitoring seagrass are by detecting and segmenting it. The purpose of the study is to implement and get information about the performance of the Mask R-CNN algorithm in detecting and segmenting the Enhalus acoroides. The dataset consists of 500 Enhalus acoroides images that had gone through a color correction and labelling process. The training process was performed with the configuration of 0.001 learning rate, batch size of 4 and some image augmentation was used to avoid overfitting. The optimum weight value was obtained after conducting the learning process with 100 epochs. A confusion matrix was used to evaluate detection performance, and linear regression was used to evaluate the segmentation produced by the model. The model evaluation results showed an accuracy value of 0.9246, a precision value of 0.9507, a recall value of 0.9712 and a correlation coefficient value of 0.8771. The value indicates that the model can detect and segment the seagrass Enhalus acoroides well and accurately.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Labels Are All You Need for Coarse Seagrass Segmentation;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3