Algorithm design for wind prediction in Berakit Bay, Bintan Island using Long Short-Term Memory (LSTM) method

Author:

Pratama D R,Jaya I,Iqbal M

Abstract

Abstract Wind speed is a crucial parameter alongside coastal areas, especially Indonesia. Above average wind speed can cause harmful effects on human activities. This study uses wind speed data from Berakit Bay, Bintan Island is a potential location for coastal community settlement, fisheries, and tourist activities. The wind parameter then predicted using the Long Short-Term Memory or LSTM algorithm. This algorithm is able to study long-term dependencies by converting simple nervous system designs into specialized blocks containing cells. It is suitable to be applied to long-term wind predictions where the wind speed at this time is very influential with the wind speed in the future. In preparing the LSTM, the data preprocessing and the architecture used will determine the prediction results. In this study, four different architectures were made in order to determine the most optimal architecture. The results show that the LSTM architecture is able to obtain a relatively good RMSE value of 1.87 and an accuracy of 39.40% with the use of two LSTM layers, 256 units in the first layer and 128 in the second layer. The LSTM algorithm in predicting wind can also be applied to other areas in Indonesia.

Publisher

IOP Publishing

Subject

General Engineering

Reference27 articles.

1. Prediksi kecepatan angin menggunakan Adaptive Neuro Fuzzy (ANFIS) dan Radial Basis Function Neural Network (RBFNN);Nikentari;JEPIN,2018

2. Persepsi masyarakat nelayan dalam menghadapi perubahan iklim (ditinjau dalam aspek sosial ekonomi);Ulfa;Jurnal Pendidikan Geografi,2018

3. Pemetaan potensi energi angin di perairan Indonesia berdasarkan data satelit QuickSCAT dan WindSat;Dida;Jurnal Rekayasa Mesin.,2016

4. Dampak lingkungan terhadap pencemaran laut di pesisir utara Pulau Bintan selama musim angin utara;Negara;Jurnal Saintek Maritime,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Short-Term Wind Power Forecasting in East Java Using Gated Recurrent Unit;2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS);2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3