Design and implementation of fish freshness detection algorithm using deep learning

Author:

Anas D F,Jaya I,Nurjanah

Abstract

Abstract Organoleptic assessment of fresh fish includes specifications for the quality of the eyes, gills, mucus, odor, texture and flesh (color and appearance). However, not everyone has knowledge about it. This research uses the tiny yolov2 to facilitate the determination of fish freshness levels (good quality, medium quality, poor quality) correctly and fast. There are a few stages in this research, included organoleptic test accompanied by taking fish eye image dataset every hour, processing organoleptic test data labeling, training, and validation. There are three types of fish used, consists of Rastrelliger, Euthynnus affinis, and Chanos chanos. Detection of fish freshness level for three species was successfully carried out with the result of average precision is 72.9%, average recall is 57.5%, and accuracy is 57.5%. The factors that affect the prediction results in this study is the collection of datasets before the training process is carried out consisting of fish samples obtained from traditional markets, which are considered inadequate so that it affects the organoleptic test process itself, the organoleptic test that was carried out as a reference for image sorting was considered inaccurate because it used less than 30 untrained panelists and dataset imbalance.

Publisher

IOP Publishing

Subject

General Engineering

Reference20 articles.

1. Pengawetan ikan bawal dengan pengasapan dan pemanggangan;Mareta;Jurnal Ilmu-Ilmu Pertanian,2011

2. Tingkat kesegaran ikan kembung lelaki (Rastrelliger kanagurta) yang dijual eceran keliling di Kota Makassar;Nurqaderianie;Jurnal IPTEKS PSP,2016

3. Aplikasi metode akustik untuk uji kesegaran ikan;Jaya;Buletin Teknologi Hasil Perikanan,2006

4. Aplikasi penentuan tingkat kesegaran ikan selar berbasis citra digital dengan metode kuadrat kecil;Bee;Jdc.,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3