Molecular docking analysis of Allium chinense compounds as Secreted Aspartyl Proteinase-5 (SAP5) inhibitor

Author:

Hartanto A,Naibaho F G,Panjaitan D,Lutfia A,Munir E

Abstract

Abstract Secreted Aspartyl Proteinase-5 (SAP5) or candidapepsin-5 is known as the current and major virulence factor in the biofilm formation of Candida albicans. The protein is secreted into the environment to disrupt the host immune cells and degrade keratin then penetrating the host defense to express its pathogenicity. SAPs has been targeted for many studies including in vitro test and in silico analysis of potential inhibitory agents. In the current study, we tested six selected compounds in the aqueous extract of Allium chinense G. Don. namely 1-tetradecanol, anozol, hyacinthin, isosorbide, mannitan and oleic acid for in silico analysis along with pepstatin A as the most potent inhibitor or control. The results obtained that oleic acid displayed the most stable bonding with the SAP5 based on molecular docking, visualization and data analysis although slightly lower than anozol in terms of binding affinity. Oleic acid also produced the most similar number of binding residues with pepstatin A based on 2D feature with also similar region in the pocket of SAP5 based on 3D visualization. Hence, the compound may be potentially developed as leading compound in treating C. albicans infections.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3