Analytical models for adiabatic compressed air energy storage (A-CAES) systems in lined tunnels

Author:

Menéndez Javier,Loredo Jorge,Prado Laura Álvarez de,Fernández-Oro Jesús M.,Bernardo-Sánchez Antonio

Abstract

Abstract Adiabatic compressed air energy storage (A-CAES) systems consist of an underground reservoir where compressed air is stored at high pressures. The ambient air is compressed by compressors located at the surface and the thermal energy is stored using thermal energy storage (TES) systems. The compressed air is stored in the subsurface reservoir (charge). Then, when the electricity is needed, the compressed air is released and expanded in gas turbines to produce electricity (discharge). In this paper, an analytical model has been developed to investigate the thermodynamic behaviour during air charge and discharge processes. Operating pressures from 4.5 to 7.5 MPa has been employed in lined tunnels in the compression and decompression stages. The model considers a 20 mm thick sealing layer, a 0.4 m thick concrete lining and a 1 m thick rock mass around the air. Air mass flow rates of 0.19 and 0.27 kg s−1 have been used in the charge processes for polymer material and steel, respectively. Finally, in the discharge processes the mass flow rate increases up to -0.38 and -0.45 kg s−1 for polymer and steel. The air temperature and pressure and the temperature and heat transfer in the sealing layer, concrete lining and rock mass have been analyzed for 100 cycles considering polymer material and steel as sealing layers. The heat transfer through the sealing layer reaches -150 and -95 W m-2 for steel and polymer, respectively. The results obtained show that the storage capacity increases when the heat transfer through the sealing layer increases.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3