Optical analysis of an evacuated tube collector with built-in compound parabolic concentrator for process heat applications

Author:

Rosa Christodoulaki,Panagiotis Tsekouras,Vassiliki Drosou

Abstract

Abstract To date, insufficient attention has been paid to the potential of renewable energy resources in industrial applications. Up to 21% of final energy demand and feedstock-use in the manufacturing industry sector could be of renewable origin by 2050. Process temperatures found in industrial processes range from low (T<100°C), medium (100°C < T < 250°C) to high (T > 250°C) temperatures. Whereas low temperature applications are already addressed by well-established collector technologies, the medium temperature applications are still in an early development stage. The aim of this study is to evaluate the optical performance of an Evacuated Tube Collector with Compound Parabolic Concentrator (ETC-CPC) used for medium temperature industrial process heat. To this end, an optical simulation model is developed in Tonatiuh ray-tracing software and is validated towards the theoretical fully developed curve. The parametric analysis performed investigates the impact of the truncation origin, the reflectivity of the CPC mirror and the absorber radius on the optical efficiency and the power production of the solar collector. It is found that the collector with the biggest truncation origin (0.025m) performs better under small Sun angles (0°-20°), but worse under greater Sun angles (40°-90°). This happens because the collector with the greatest truncation origin has the biggest mirror area and under small Sun deviations this leads to more gains and higher efficiency. The quality of the mirror plays an important role in the optical efficiency of the collector, but mainly for incident angles less than 20°. Moreover, increasing the radius of the absorber, the power production per aperture area is increased. The variation of the absorber radius shows that the radius of the base scenario compensates most of the optical errors but without being big enough to have excess heat loss. The results of this study are valuable for the design, simulation and performance analysis of ETC-CPC for delivering medium temperature heat.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3