Efficient hygro-thermal and ammonia control in day-old chick brooding box using internet of things and Tsukamoto Fuzzy controller

Author:

Adek R T,Ula M,Bustami B

Abstract

Abstract Day-old chick brooding box systems play a pivotal role in optimizing chicken production by providing ideal environmental conditions. Controlling hygro-thermal parameters (temperature and relative humidity) and ammonia levels in poultry buildings is paramount. In this study, we introduce a novel approach where an Internet of Things (IoT) based prototype for day-old chick brooding box management is integrated with an Android application for real-time monitoring and control. The prototype incorporates an innovative hybrid control strategy, combining a Tsukamoto (TSUKAMOTO) fuzzy logic controller (FLC) with IoT. This approach is rigorously tested through experimental measures and studies over a 90-day period, encompassing both rainy and drought seasons. Comparative analysis reveals that the T-FLC controller outperforms conventional methods, exhibiting lower root mean square errors for temperature and relative humidity response (0.9°C, 1.35%) compared to the FLC (1.18°C, 1.89%) and On/Off controller (2.08°C, 3.07%). Importantly, all controllers maintain ammonia concentrations below 4 ppm. Furthermore, the T-FLC system demonstrates superior efficiency, achieving a daily weight gain rate of 95%, surpassing the FLC (89%) and On/Off controller (81%). Additionally, the T-FLC controller significantly reduces energy consumption, saving up to 40% compared to the On/Off controller and 16% compared to the fuzzy controller. These findings underscore the exceptional efficiency and effectiveness of the proposed control strategy for day-old chick brooding box applications, promising enhanced poultry production and sustainability.

Publisher

IOP Publishing

Reference25 articles.

1. IoT-Agri: IoT-based Environment Control and Monitoring System for Agriculture;Nalendra,2022

2. Energy-Efficient IoT-Based Light Control System in Smart Indoor Agriculture;Pena,2023

3. Solution approach for optimal power flow considering wind turbine and environmental emissions;Maheshwari;Wind Engineering,2021

4. Environmental Monitoring of Chicken House Based on Edge Computing in Internet of Things;Yang,2019

5. Design and Implementation of State-PID Feedback Controller for Poultry House System: Application for Winter Climate;Lahlouh;Advances in Science, Technology and Engineering Systems Journal,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3