Removal of copper and zinc in metal working fluid using coconut composite filter media

Author:

Aziz A F,Akbar N A,Ismail B N,Said M S,Yusoff M S,Adnan M I

Abstract

Abstract Metal working fluid industry is the major contributing sources of heavy metals. Their multiple industrial, domestic, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Filtration technology is widely used to remove contaminants such as heavy metals because it is a low-cost wastewater treatment device that uses physical methods that are simple and effective. In this study, coconut composite activated carbon (CCAC) filter media has been explored for its adsorption abilities towards copper and zinc solutions from metal working fluids. The characteristic of CCAC was investigated using XRF analyser, SEM and FTIR analysis. This study described the performance of fixed-bed column filtration by using CCAC as the filter media under the effect of various bed heights (10,30,50 cm) and initial concentration of copper and zinc (10 and 20 mg/L) to assess the breakthrough curve. The results show that the CCAC surface is not smooth and porous, with many channels. It is connected to hydrogen linked, O-H and contains the highest value composition in MgCO3 and CaCO3, which enhances metal precipitation removal of heavy metals. From the fixed-bed column study, the column with an initial copper and zinc concentration of 10mg/L and a bed height of 50 cm performed well in removing copper and zinc from synthetic copper and zinc solutions. The breakthrough and exhaustion times were less than 30 minutes and 3660 minutes for copper and zinc were less than 30 minutes and 3420 minutes respectively. The longer the lifespan of filter media, the better the filter media for heavy metal treatment. In conclusion, CCAC filter media was used as an alternative to the existing wastewater treatment process to remove copper and zinc from metal working fluids. It also can be applied in the current filtration system, especially for industrial Wastewater Treatment Plant (WWTP).

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3