Determination of a new gravimetric geoid modelling for Sudan using the least-squares collocation technique

Author:

Osman Anas Sharafeldin Mohamed,Anjasmara Ira Mutiara

Abstract

Abstract The main purpose of this study is to compute a new gravimetric geoid model for Sudan by using the least-square collocation technique (LSC method) and applying the remove-compute-restore (RCR) technique. The computation of the model contains different datasets which are the gravity contribution of the model GO_CONS_GCF_2_TIM_R6e degree/order 300, BGI free-air gravity dataset in Sudan, GPS/levelling data, and high-resolution topographic information from ASTER digital elevation model. The “residual gravity anomalies” were run through the GEOCOL program using the GRAVSOFT software package, and the effects were restored to calculate the quasi-geoid surface (height anomalies). The gravimetric geoid was computed by adding the (N − 𝜁 h ) separation term to the quasi-geoid and was fitted to the GPS and levelling data provided by Sudan. The accuracy of our gravimetric geoid model SDN-LSC-G22 of the area of Sudan and some areas of bordering countries has been investigated by using geoid undulations computed from GPS and levelling data and by investigating the differences between the geoids of the GGM models which are EGM2008 and SGG-UGM-2. Our gravimetric geoid model (SDN-LSC-G22) has indicated an accuracy of 17.4 cm, in terms of a standard deviation compared with 66 GPS and Leveling data distributed in the area of Khartoum (most of these points are control points and benchmarks). Also, we evaluated our gravimetric geoid model by using 19 points distributed in the area of Sudan, and they indicated a standard deviation of 51.3 cm. The overall accuracy of SDN-LSC-G22 compared with the geoid undulation of all GPS and levelling has indicated an STD of 34.1 cm. The model SDN-LSC-G22 has shown better accuracy and significant differences compared with the GGM models EGM2008 and SGG-UGM-2 in terms of the differences with the available GPS and levelling data which have shown ~17 cm differences using (Abdalla, 2009) GPS and levelling data. It has demonstrated STD of ~17 cm differences by using 66 GPS and levelling data. Therefore, the model SDN-LSC-G22 provided better improvements and reliable geoid heights over Sudan compared to EGM2008 and SGG-UGM-2 gravity field models.

Publisher

IOP Publishing

Subject

General Engineering

Reference21 articles.

1. On the Computation of Gravimetric Geoid of Egypt using Different Estimation Techniques By Eng. Ahmed Saadon Mohamed Lotfy,2019

2. The shape of the geoid in the Sudan;Salih;Aust. J. Geod. Photo. Surv.,1983

3. The shape of the geoid by astrogeodetic and Doppler methods in the Sudan;Salih;Aust. J. Geod. Photo. Surv.,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3