Revisiting tin melting for phase change model verification

Author:

Irwan M A M,Nor Azwadi C S,Asako Y

Abstract

Abstract Model verification is necessary before numerical models can be applied to produce meaningful results. For solid-liquid phase change modelling involving convection, pure gallium and tin melting have been widely used as reference for verification. It was later found that contrasting observations have been reported on the flow structure of both metals in the liquid region during the phase change process. Some researchers have reported monocellular while others reported multicellular structures in past works. In this work, tin melting problem was revisited by extending the results to flow structure visualization with Line Integral Convolution (LIC) plots to confirm the flow structure for tin melting thus pure metals in general. Enthalpy-porosity formulation coupled with Finite-Volume Method (FVM) was used to solve the set of governing equations which represented the problem at Prandtl Number = 0.02, Stefan Number = 0.01 and Rayleigh Number = 2.5 x 105. The location of solid-liquid interface and LIC plots at different times were presented. At initial state, the solid-liquid interface was closely similar for all grid sizes but as time progresses, finer grids provided improved solutions as expected. Reasonable fine grid size must be selected for solid-liquid phase change models to ensure complete physics of the problems are captured and eventually yield acceptable numerical results. The LIC plots confirmed that the flow structure is multicellular. Future phase change models referring to pure metal melting problem for verification should obtain similar flow structure to be considered acceptable.

Publisher

IOP Publishing

Subject

General Engineering

Reference20 articles.

1. Thermal performance analysis of nanoparticles enhanced phase change material (NEPCM) in cold thermal energy storage (CTES);Kean;CFD Letters,2019

2. A comparison of different solution methodologies for melting and solidification problems in enclosures;Viswanath;Numer Heat Transfer,1993

3. Melting and solidification of a pure metal on a vertical wall;Gau;Journal of Heat Transfer,1986

4. Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal;Brent;Numerical Heat Transfer,1988

5. Melting of a pure metal from a vertical wall;Wolff;Experimental Heat Transfer,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3