Modelling and simulation of a biomass-based integrated gasification combined cycle with carbon capture: comparison between monoethanolamine and potassium carbonate

Author:

Ghiat Ikhlas,AlNouss Ahmed,Mckay Gordon,Al-Ansari Tareq

Abstract

Abstract There are global efforts to reduce the impacts from climate change by limiting increases in temperature to 1.5 °C until 2030, and achieve carbon neutrality by 2050. Thus, it is necessary to design new neutral processes and systems that can meet the varying and growing demands of the population in terms of energy, water and food. One of the main carbon emitters and contributors to climate change is the energy industry, which primarily uses oil and natural gas as an energy source. Fortunately, alternative resources are available such as renewable energies that assemble various environmental and economic benefits. However, more work is necessitated to efficiently utilise these resources by designing, analysing, and optimising existing and new renewable energy-based processes. Therefore, this study proposes a net negative carbon emissions energy system that utilises waste biomass as a feedstock. A biomass based integrated gasification combined cycle combined with a post combustion carbon capture unit by means of chemical absorption is designed and analysed. Two different chemical solvents are used for comparison: Monoethanolamine (MEA) and potassium carbonate. The proposed integrated system is modelled and simulated in Aspen Plus software, and is analysed thermodynamically in terms of energy and exergy efficiencies. A sensitivity analysis is also conducted to assess the effect of varying operating conditions such as flowrate, and temperature of the lean solvent, and the pressure inside the stripper. At design conditions with 80% carbon capture, the system generates 419 kW of electricity and operates at -0.32 kg/kWh of CO2 for both the potassium carbonate and MEA systems.

Publisher

IOP Publishing

Subject

General Engineering

Reference15 articles.

1. U.S Energy Information Administration EIA,2019

2. Summary for Policymakers: Global Warming of 1.5°C,2018

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3