Behavior of Modified Strut-and-Tie Model (STM) on Concrete Beams

Author:

Sugianto A,Antonius A,Taufik S

Abstract

Abstract Reinforced concrete components are generally designed to withhold shear and bending based on the assumption at strain varies linearly in a section where the applied force is a combination of shear with bending, torsion, or normal forces. The behavior of shear failure in reinforced concrete beams is very different from that in flexural failure. Shear failure is brittle without warning in the form of significant deflection, resulting in diagonal cracks in the beam then the shear force mechanism will be contributed by an arching action where this action can provide a reserve capacity large enough for the beam to carry the load. Nonlinear analysis using the strut-and-tie method is particularly useful for shear-critical structures where classical beam theory is not valid due to significant shear deformations. Strut-and-Tie Model research which is applied to concrete (25 MPa), also uses the optimal configuration FEM software tool from Strut-and-Tie which leads to the efficiency of Strut-and-Tie. The results of the optimization and modification of the Strut-and-Tie Model on concrete will also be applied to the experimental models tested until they fail so that the optimal conditions for numerical models will be obtained. Based on the analysis result of element model using ANSYS computational assistance program, the ultimate flexural capacity of the beam model will increase depending on the used STM model and inclination angle (Φ), at the STM type 2 high < 1000 mm, inclination angle (Φ) 45° having a decrease in ultimate shear capacity (Vu) of 49,31% against type 1, at the STM model 3 high < 1000 mm, with inclination angle (Φ) 45° having an increase ultimate shear (Vu) of 4,14% against type 1. Stress pattern performed bottle shape in line with diagonal strut. Ductility capacity will be decreased at inclination angle <45° of 27,11%, at inclination angle >45° will be decreased of 55,67%,

Publisher

IOP Publishing

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3