Automated activity recognition of construction workers using single in-pocket smartphone and machine learning methods

Author:

Wang Guohao,Yu Yantao,Li Heng

Abstract

Abstract Automatic recognition of construction workers’ activities contributes to improving productivity and reducing the potential risk of injury. Kinematics sensors have been proved feasible and efficient to recognize construction activities. However, most of the sensors need to be tightly tied to workers’ bodies, which might result in uncomfortableness and workers’ reluctance to wear the sensors. To solve the problem, this paper proposes a less physically intrusive construction activities recognition method with a single in-pocket smartphone. The smartphone was placed in the pocket in a natural and non-fixed manner, with its built-in accelerometer and gyroscope collecting motion data. Machine learning-based classifiers were trained to recognize construction activities. An experiment simulating rebar activities was designed to verify the effectiveness of the proposed method. The experiment results showed that the proposed method could identify rebar activities (with an accuracy over 94%) in a non-intrusive manner.

Publisher

IOP Publishing

Subject

General Engineering

Reference25 articles.

1. Automated methods for activity recognition of construction workers and equipment: state-of-the-art review;Sherafat;Journal of Construction Engineering and Management,2020

2. Nonfatal occupational injuriesand illnesses resulting in days away from work in 2016,2016

3. Accelerometer-based activity recognition in construction;Joshua;Journal of Computing in Civil Engineering,2011

4. Activity identification in modular construction using audio signals and machine learning;Rashid;Automation in Construction,2020

5. Automated action recognition using an accelerometer-embedded wristband-type activity tracker;Ryu;Journal of Construction Engineering and Management,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3