Numerical investigation of a reduced scale Lenz wind turbine model for aerodynamic tunnel applications

Author:

Bucur I O,Malael I,Preda D

Abstract

Abstract Renewable energy sources represent efficient and reliable energy solutions for the modern world, as they are eco-friendly alternatives to fossil fuels or nuclear power plants. The technologies available nowadays allow researchers to perform in-depth computational fluid dynamics analysis for systems that can generate green energy. The wind energy industry developed considerably as classic wind turbine models (horizontal axis wind turbines and vertical axis wind turbines) are constantly optimized and new configurations are studied in order to asses better performances. This paper presents the numerical investigation campaign of a reduced scale Lenz wind turbine model. The Lenz model has three blades that are attached directly on a vertical shaft. For the numerical simulations of the model, the ANSYS Fluent software is employed. For the evaluation of its self-starting behaviour the six degree of freedom method was employed and the configuration was studied for different moments of inertia. Furthermore, the chosen range of inlet velocities allowed the investigation of the influence of high Reynolds numbers on the proposed Lenz model and the vorticity magnitude contours were computed for different azimuth angles. Future work includes the validation of the numerical results with experimental data obtained during a wind tunnel testing campaign.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NUMERICAL ANALYSIS OF A NOVEL VERTICAL-AXIS WIND TURBINE LAYOUT;INMATEH Agricultural Engineering;2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3