Future impacts of climate change on sediment influx rate in hydropower reservoir using SWAT

Author:

Abdul Razad A Z,Shamsuddini S H,Setu A,Mohd Sidek L

Abstract

Abstract Climate change causes more frequent and intense rainfall events, leading to severe erosion in the catchment and sediment transferred into rivers and reservoirs. This study focus on long term sediment load in major rivers in Cameron Highlands and prediction of annual sediment inflow into Ringlet Reservoir from 2000 to 2030. Soil Water Assessment Tool (SWAT) is used as the simulation tool, utilising future gridded rainfall 2017 to 2030 under CCSM and future land use 2030. Future annual rainfall is minimum at 1551 mm (in 2030) and maximum at 3150 mm (in 2029). The future projected annual sediment load into Ringlet Reservoir from 2017 to 2030 is averaged at 354,013 m3/year, ranging from 216,981 to 461,886 m3/year. Comparing between the historical period of 2000 to 2016 and future projection (2017–2030), annual sediment load shows an increase of 12 %. To combat the increase sediment yield, catchment management such as erosion control plan, drainage and runoff control must be developed to minimise sediment yield and subsequent effect of high sediment load transport via rivers and drainage network.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3