Propagation analysis and risk assessment of an active complex landslide using a Monte Carlo statistical approach

Author:

Brezzi L,Carraro E,Gabrieli F,Dalla Santa G,Cola S,Galgaro A

Abstract

Abstract The risk assessment of a rapid landslide is a difficult topic, even if based on the results of numerical analyses. The hypotheses on which every model is developed, the choice of rheological laws to be adopted, and the selection of soil parameters make the simulation results highly dependent on the user. This is particularly evident when there is no model calibration for the specific site or reliable information on soil properties. The paper presents a forecasting process obtained using a Monte Carlo approach in coupling with a propagation model developed with the SPH integration technique. The Monte Carlo analysis allows automatically carrying out a large number of simulations, each performed using an independent parameter set randomly selected within a priori assigned statistical distributions. The numerical results are then analysed with statistical tools to create a risk map based of the frequency of the unstable mass runouts. In this way, it is possible to reduce the user dependence of results and increase the examined potential scenarios. The procedure is here applied to the case study of the Sant’Andrea landslide, a slope movement active since several decades in the municipality of Perarolo di Cadore (Belluno, Italy). This complex slide involves an about 30 m-thick deposit of calcareous debris overlying anhydrite-gypsum rocks. Depending on the intensity and duration of rain, the slope alternates phases characterized by slow displacements and significant accelerations, then followed by a long relaxation period in which the displacement rate slowly regresses, without returning to the previous condition of movement. In recent years, the landslide activity has caused a progressive enlargement of the unstable area and a gradual increase of the basal rate, thus increasing the risk that the landslide may suddenly undergo to the collapse. Moving from the knowledge of the unstable volume, an SPH propagation model is used to study the area affected by the debris-flow runout. In particular, the analysis aims to define a statistical strategy to perform and interpret a large number of simulations and to create the consequent risk map. The analyses carried out lead to a satisfactory interpretation of the spatial variability of the deposit heights referred to the post-failure conditions, useful for the development of a risk analysis, from which a site risk map can be obtained.

Publisher

IOP Publishing

Subject

General Engineering

Reference16 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3