Author:
Agliardi F,Castellanza R,Frigerio G,Orlandi G M
Abstract
Abstract
The stability analysis of underground mine systems with complex 3D geometry is still a challenging task, especially when abandoned mines are planned for new uses with public access, that imply more restrictive safety requirements. This inherently multi-scale problem requires both the evaluation of the global mine stability and the assessment of local deformation and failure mechanisms of individual pillars or roof sectors in a robust 3D modeling framework. We integrated 3D remote survey techniques and FEM 3D modeling to perform a comprehensive stability analysis of an abandoned fluorite mine system in the central Southern Alps (Italy), including ten levels excavated in bedded limestones. We reconstructed the 3D geometry of three levels undergoing a reuse plan, combining a dynamic LiDAR system and close-range photogrammetry. We used point clouds in a workflow to generate solids, excavate the 3D analysis domain and generate a FEM 3D mesh for numerical modeling. We performed a series of continuum-based FEM 3D simulations of mine excavation and rock mass strength degradation. Our results allowed assessing the global stability of the abandoned mine and identifying critically stressed roof sectors and pillars to prioritize the local-scale analysis, remediation and monitoring of critical spots.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献