Author:
Kumari Rinku,Vinayak Karan Singh,Kumar Deepak
Abstract
Abstract
Extended efficiency of solar cells to ensemble more solar energy as well as its optimum conversion and utilization is believed to be a major challenge in current times. The spectral mismatch between the distribution of energy in the solar spectrum incidence and the semiconducting material band gap is a major restriction in the performance of solar cells. The conversion of wavelength of the sun is a necessary requisite to reduce spectral disruption. Of late, the solar cell converters are presumed as up-converted components and products derived from down conversion. Materials like NaCsWO3, NaYF4, and NaYF4: Yb, Er are synthesized and used to overcome the problem like deficiency of up-conversion luminescence (UCL) materials and device structures. The intensity of UCL can be enhanced by a significant time when the amount of NaCsWO3 is 2.8 m mol per cent. UCL material is considered as one of the best approaches to obtain high-efficiency perovskite solar cells (PSCs). In order to overcome these difficulties, not only were these effective up-conversion nano-particles (UPCNPs) doped into the hole layer but the perovskite foil was also modified in PSCs. The highest power conversion (PCE) performance reached 18.89%. Enhanced UCLs allow for UCNPs to extend the recognition spectrum of near PSCs. The objective of this comprehensive and focused review is to highlight the different synthesis techniques used in up-conversion nano-materials, for solar cell applications along with a theoretical perspective in this regard.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献