Synthesis Techniques for rare Earth doped up-conversion Nano-materials for Solar cells – A brief Review

Author:

Kumari Rinku,Vinayak Karan Singh,Kumar Deepak

Abstract

Abstract Extended efficiency of solar cells to ensemble more solar energy as well as its optimum conversion and utilization is believed to be a major challenge in current times. The spectral mismatch between the distribution of energy in the solar spectrum incidence and the semiconducting material band gap is a major restriction in the performance of solar cells. The conversion of wavelength of the sun is a necessary requisite to reduce spectral disruption. Of late, the solar cell converters are presumed as up-converted components and products derived from down conversion. Materials like NaCsWO3, NaYF4, and NaYF4: Yb, Er are synthesized and used to overcome the problem like deficiency of up-conversion luminescence (UCL) materials and device structures. The intensity of UCL can be enhanced by a significant time when the amount of NaCsWO3 is 2.8 m mol per cent. UCL material is considered as one of the best approaches to obtain high-efficiency perovskite solar cells (PSCs). In order to overcome these difficulties, not only were these effective up-conversion nano-particles (UPCNPs) doped into the hole layer but the perovskite foil was also modified in PSCs. The highest power conversion (PCE) performance reached 18.89%. Enhanced UCLs allow for UCNPs to extend the recognition spectrum of near PSCs. The objective of this comprehensive and focused review is to highlight the different synthesis techniques used in up-conversion nano-materials, for solar cell applications along with a theoretical perspective in this regard.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3