Effect of Granular Silica Aerogel as Filler on Tensile and Flexural Strengths and Moduli of Stone-Wool-Fibre-Reinforced Composite as Rigid Board Roof Insulation Material

Author:

Husna Nadzhratul,Farhan Syed Ahmad,Wahab Mohamed Mubarak Abdul,Wahab Mohamed Mubarak Abdul,Shafiq Nasir,Sharif Muhammad Taufiq,Razak Siti Nooriza Abd,Ismail Ismail Fouad

Abstract

Abstract Installation of stone wool as thermal insulation in the roof assembly can be adopted to store heat in the living space, if the building is exposed to cold weather, and, inversely, to retard heat from entering the living space, if it is exposed to hot weather. In spite of the effectiveness of stone wool as a roof insulation material, during installation, it can cause irritation to the skin and can be hazardous to the lungs. Therefore, incorporation of stone wool with other materials to form a rigid board, without compromising its effectiveness as a roof insulation material, is imperative. Strength properties of a stone-wool-fibre-reinforced high-density polyethylene (HDPE) composite roof insulation material were studied. Granular silica aerogel, which possesses an ultra-low thermal conductivity, was added as filler to reduce the thermal conductivity of the composite. Hot compression moulding was performed to prepare samples of the composite with varying silica aerogel content of 0, 1, 2, 3, 4, and 5 wt. %. Findings suggest that 2 wt.% is the optimum silica aerogel content as it resulted in the highest flexural strength and modulus, which is 24.4 MPa and 845.85 MPa, respectively, even though it reduced the tensile strength and modulus by 10% and 4.45% respectively, relative to 0 wt. %, which can be considered as inconsequential. Higher silica aerogel content above 2 wt. % may result in poor interfacial adhesion and low compatibility to the stone wool fibre and HDPE, which further reduces the tensile and flexural strengths and moduli of the composite.

Publisher

IOP Publishing

Subject

General Engineering

Reference20 articles.

1. State of the art in thermal insulation materials and aims for future developments;Papadopoulos;Energy Build.,2005

2. Response of stone wool-insulated building barriers under severe heating exposures;Andres;J. Fire Sci.,2018

3. Effectiveness of aerogel roofing system on temperature reduction in Malaysian residential buildings;Nuruddin;J. Eng. Appl. Sci.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3