Emergency gates - model scale tests at turbine runaway condition

Author:

Angulo M.,Rivetti A.,Díaz L.,Lucino C.,Liscia S.

Abstract

Abstract Emergency gates are the last link in the chain of safety of turbo-groups in case of distributor failure, safeguarding the power station from severe damage. These gates can be located at the turbine intake or at the outlet of the draft tube and can be controlled by gantry cranes or hoist hydraulic cylinders. Gates must descend with high flow for a short time to prevent the turbine from spinning at runaway velocity for periods longer than admissible, as that would entail the rise of uplift and downpull forces that may jeopardize their stability. Indeed, at the prototype scale, the closing maneuver entails a certain risk, because of which it is usually tested avoiding extreme conditions. In this work, the operation of emergency gates was tested against more severe conditions on a reduced-scale physical model. The case study involves three emergency gates controlled by gantry cranes and located at the intake of a large Kaplan turbine which underwent high levels of vibration when operated at prototype scale. Model tests were aimed at detecting and quantifying hydraulic phenomena that might emerge during operation with an eye on the proposal of alternative designs. Unlike most tests of this sort, the experimental setup includes the runner of the turbine assembled on a test rig, which allows for a more realistic flow distribution along the vanes during the gate closure under runaway conditions. Steady state tests were carried out under runaway conditions, while stems of servomotors enabled the regulation of the position of the gate. Downpull forces were found to start at 12 % of the gate opening. Flow asymmetry was observed, gate on the left of the semi-spiral casing being the most affected by higher flow velocities. The runner vortex rope frequency was measured also at gate lip for some particular conditions.

Publisher

IOP Publishing

Subject

General Engineering

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3