Turbine mode start-up simulation of a variable speed Francis pump-turbine prototype – Part II: 3-D unsteady CFD and FEM

Author:

Biner D.,Alligné S.,Hasmatuchi V.,Nicolet C.,Hugo N.,Avellan F.,Dujic D.,Münch-Alligné C.

Abstract

Abstract The Z’Mutt pumping station, part of the Grande Dixence hydroelectric scheme, is one of the demonstrators of the XFLEX HYDRO project. A 5 MW reversible pump-turbine prototype equipped with a full-size frequency converter (FSFC) is used to investigate dynamic variable speed operation in pumping and generating mode. Since the FSFC converter is always connected to the electrical grid, the full rotational speed range of the motor-generator can theoretically be exploited. Furthermore, this technology enables fast operating point transitions and therefore increased grid regulation capacities. The advantages of the FSFC technology in generating mode are compared to a conventional fixed speed start-up with a variable speed start-up. The operating point trajectories are extracted from 1-D hydraulic transient simulations. Detailed hydrodynamic and structural aspects of the pump-turbine during the two start-up scenarios are further studied. Simplified unsteady 3-D CFD simulations and transient structural FEM analyses of the pump-turbine prototype are carried out to assess the harshness of the flow and to anticipate runner fatigue. The present work aims to point out potential mitigation of partial runner damages during start-up in generating mode using FSFC technology.

Publisher

IOP Publishing

Subject

General Engineering

Reference12 articles.

1. Design and Dynamic Response Characteristics of 400 MW Adjustable Speed Pumped Storage Unit for Ohkawachi Power Station;Kuwabara;IEEE Transactions on Energy Conversion,1996

2. Optimized control strategies for variable speed machines;Kopf

3. Investigation of control strategies for variable speed pump-turbine units by using a simplified model of the converters;Pannatier;IEEE Transactions on Industrial Electronics,2010

4. Full size converter solutions for pumped storage plants – a promising new technology;Hell

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3