Application of particle-based numerical analysis to the practical design of Pelton turbine

Author:

Kumashiro Takashi,Alimirzazadeh Siamak,Avellan François,Tani Kiyohito

Abstract

Abstract For the design optimization of the Pelton turbine, it is highly demanded to investigate the flow inside the turbine casing, which includes the water jet from the nozzles, the interaction between the jet and rotating runner, and the flow ejected from the bucket outlet, in various operating ranges. The behavior of the flow, however, is very complicated due to its unsteadiness and free surface. Further, the experimental observation in the model test is challenging because of the high time resolution requirement and the obstruction by the splashing water inside the turbine housing. In this regard, the numerical analysis is considered as a powerful method to approach the flow behavior in the Pelton turbine. Conventionally, the grid-based numerical analysis is applied to the calculation of the flow for its practical design. However, with the gird-based methods, a huge amount of fine elements is required to capture the unsteady behavior of the water free surface and the tiny splashing water particles. Increasing the number of elements directly results in higher computational costs, which makes it difficult to consider the splashing water in the process of practical design. From this point of view, the GPU-accelerated finite volume particle method is applied to the investigation of the flow in this research. It is firstly confirmed that the particle-based numerical result has a good agreement with the experimental result by the comparison of the turbine characteristics. Furthermore, several evaluations of the flow based on the analysis for the practical design are introduced in the paper.

Publisher

IOP Publishing

Subject

General Engineering

Reference10 articles.

1. Modernization of vertical Pelton turbines with the help of CFD and model testing;Mack,2014

2. Unsteady CFD simulation for bucket design optimization of Pelton turbine runner;Kumashiro,2016

3. Simulation of silt erosion using particle-based methods;Jahanbakhsh,2014

4. GPU-Accelerated Finite Volume Particle Simulation of Free Jet Deviation by Multi-jet Rotating Pelton Runner;Alimirzazadeh,2019

5. Hydraulic turbines, storage pumps and pump-turbines – Model acceptance tests,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3