Improving the Electrochemical Performances of Supercapacitors through Modification of the Particle Size Distribution of the Carbon Electrode

Author:

Sutarsis ,Chang Jeng-Kuei

Abstract

Abstract The effect of a synergetic mixture of large and small activated carbon composite particles on the performance of organic electrolyte-based EDLCs was examined in this work. Different surface areas, pore volumes, particle size distributions, and concentrations of surface functional groups were observed in bi-modal particle sizes of activated carbon composites. Using galvanostatic cycling, the cell capacitance of an activated carbon composite rose with an increase in the fraction of big particles (C8) over a wide range of rates. Due to their moderate specific surface areas, a relatively low fraction of smaller particle size, low concentration of oxygen functional groups, low contact resistance, and high ionic conductivity, the 0.25C4+0.75C8 carbon electrode composite has a high specific capacitance, high retention of high rate discharge, and long cycle life when compared to other composites and single carbon electrodes (C4, C8, and C12). The leakage current and gas evolution may be suppressed to an operating voltage of 3.0 V with an appropriate fraction of large and small particle composition on the carbon electrode, boosting the carbon cells’ reliability and stability.

Publisher

IOP Publishing

Subject

General Engineering

Reference18 articles.

1. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors;Deng;J. Mater. Chem A,2016

2. Benefits of Million Times Larger Capacitance in EDLCs: Supercapacitor Assisted Novel Circuit Topologies, APIC 2017, Wellington, New Zeland;Kularatna,2017

3. Microporous activated carbons from ammoxidised anthracite and their capacitance behaviours;Pietrzak;Fuel,2007

4. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer;Chmiola;Science,2006

5. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons;Frackowiak;Carbon,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3