Feasibility Study of Copper-64 Radioisotope Production by Secondary Fast Neutron Bombardment

Author:

Kambali I,Febrianto I R

Abstract

Abstract As a beta and positron emitter, copper-64 (Cu-64) has been coined a theranostic agent in nuclear medicine. Copper-64 is generally produced by bombarding a nickel-64 target with a proton beam via 64Ni(p,n)64Cu nuclear reaction. In this work, secondary fast neutrons are proposed to produce Cu-64 radioisotope via 64Zn(n,p)64Cu nuclear reaction. The secondary fast neutrons were produced by a 10 MeV proton-irradiated primary titanium (Ti) target simulated using the PHITS 3.16 code. In the simulation, the Ti target thickness was varied from 0.01 to 0.1 cm to obtain the optimum secondary fast neutron flux, which was calculated in the rear, radial, and front directions. The Cu-64 radioactivity yield was then computed using the TENDL 2019 nuclear cross-section data. Also, the expected radioactive impurities during Cu-64 production were predicted. The simulation results indicated that the total fast neutron flux resulted from the 10-MeV proton bombarded Be target was 1.70x1012 n/cm2s. The maximum integrated Cu-64 radioactivity yield was 2.33 MBq/µAh when 0.03 cm thick Ti target was shot with 10-MeV protons. The most significant impurities predicted during the bombardment were radioactive isotopes e.g., Co-61, and Zn-65, with the total radioactivity yield estimated to be 0.28 Bq/µAh.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3