Attaining material sustainability by incorporating nanoparticles additives to improve the mechanical properties of polypropylene composites: data driven modelling

Author:

Alsaffar May Ali,Ali Jamal M.,Abdel Ghany Mohamed A,Ayodele Bamidele Victor

Abstract

Abstract Polypropylene is commonly employed in several industrial applications such as packaging, cable insulation and automotive. Research interest has focused on how to improve its mechanical properties to reduce the effect of low impact toughness of polypropylene. One of the sustainable ways to achieve this is by incorporating graphene nanoplatelets to form a composite. This study investigates the application of a hybrid support vector machine (SVM) and artificial neural networks (ANN) model to predict the effect of incorporating graphene on the mechanical properties of polyproline composites. The effect of parameters such as maleic anhydride grafted polypropylene (MAPP), Talc, and exfoliated graphene nanoplatelets on the tensile strength and modulus of the polypropylene composites was modelled by using ANN. Testing various topologies was accomplished. An optimized ANN structure of 3-7-2 indicating 3 input-layer, 7 hidden layer, and 2 output-layer was tested. Both the SVM and the ANN predict well the mechanical properties of polyproline composites. However, the ANN with R2 of 0.999 offers the best predictions.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3