Stability Analysis of Different shapes of Tunnel in Cohensionless Soils

Author:

Singh Yadav Jitendra,Kumar Akshay,Sharma Vaibhav,Singh Karan,Sihag Parveen

Abstract

Abstract One of the crucial factors that has gained widespread popularity during the tunnelling construction process is the face stability of tunnel that mainly depends upon the support pressure to be applied at the face of tunnel against the overburden pressure and surcharge loading acting on the earth surface. In this study, stability of different cross sections of tunnels has been investigated in cohesionless soil (loose and medium dense sand) using the Finite Element Analysis software Plaxis 2D V20. Tunnel having cross sectional dimension B as width, D as height positioned at a depth H from the surface of ground. Due to the overburden pressure acting on the face of the tunnel, a suitable uniform compressive pressure is applied at the tunnel periphery in form of lining or anchorage system against the collapse. Variation of deflection at periphery of tunnel is presented for different combinations of H/D and Ф (angle of internal friction of soil), and lining thickness. It is observed that at a particular lining thickness with the increase in H/D, the displacement at the crown in tunnel increases and this could be resisted by increasing the lining thickness. The crown deflection of circular tunnel at particular H/D, lining thickness and Ф was less as compared to semi-circular and square tunnel.

Publisher

IOP Publishing

Subject

General Engineering

Reference20 articles.

1. Undrained stability of wide rectangular tunnels.;Abbo;Computers and Geotechnics,2013

2. Studying the effect of some parameters on the stability of shallow tunnels.;Abdellah;Journal of Sustainable Mining,2018

3. Stability of a shallow circular tunnel in cohesionless soil.;Atkinson;Geotechnique,1977

4. Stability of long circular tunnels in sloping ground;Banerjee;Geomechanics and Geoengineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3