The Influence of Different Solar System Planetary Ephemerides on Pulsar Timing

Author:

Dai Jian-Peng,Han Wei,Wang Na

Abstract

Abstract Pulsar timing offers a comprehensive avenue for exploring diverse topics in physics and astrophysics. High-precision solar system planetary ephemeris is crucial for pulsar timing as it provides the positions and velocities of solar system planets including the Earth. However, it is inevitable that inherent inconsistencies exist in these ephemerides. Differences between various ephemerides can significantly impact pulsar timing and parameter estimations. Currently, pulsar timing highly depends on the JPL DE ephemeris, for instance, the Pulsar Timing Array data analysis predominantly utilizes DE436. In this study, we examine inconsistencies across various ephemeris series, including JPL DE, EPM, and INPOP. Notably, discrepancies emerge particularly between the current ephemeris DE436 and the earliest released ephemeris DE200, as well as the most recent ephemerides, e.g., DE440, INPOP21A, and EPM2021. Further detailed analysis of the effects of ephemeris on geometric correction procedures for the conversion of measured topocentric times of arrival is presented in this study. Our researches reveal that variations in the Roemer delays across different ephemerides lead to distinct differences. The timing residuals and the fact that these discrepancies can be readily incorporated into the subsequent pulsar parameters, leading to inconsistent fitting estimates, suggest that the influence of errors in the ephemeris on the timing process might currently be underappreciated.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3