Design of RFSoC-based Digital Phased Array Feed (PAF) and Hybrid Architecture Beamforming System

Author:

Pei Xin,Wang Na,Werthimer Dan,Duan Xue-Feng,Li Jian,Ergesh Toktonur,Liu Qi,Cai Ming-Hui

Abstract

Abstract As the number of array elements and bandwidth increase, the design challenges of the Phased Array Feed (PAF) front-end and its signal processing system increase. Aiming at the ng-PAF of the 110 m radio telescope, this article introduces the concept of fully digital receivers and attempts to use Radio Frequency System-on-Chip (RFSoC) technology to digitize close to the feed array, reduce the complexity and analog components of the front-end, and improve the fidelity of the signals. The article discusses the digital beamforming topology and designs a PAF signal processing experimental system based on RFSoC+GPU hybrid architecture. The system adopts a ZCU111 board to design RF-direct digitization and preprocessing front-end, which can sample eight signals up to 2.048 GSPS, 12 bit, channelize the signals into 1024 chunks, then reorder into four data streams and select one of the 256 MHz frequency bands to output through four 10 Gb links. A GPU server is equipped with four RTX 3090 GPUs running four HRBF_HASHPIPE instances, each receiving a 64 MHz bandwidth signal for high-throughput real-time beamforming. The experimental system uses a signal generator to emulate Sa-like signals and propagates through rod antennas, which verifies the effectiveness of the beamforming algorithm. Performance tests show that after algorithm optimization, the average processing time for a given 4 ms data is less than 3 ms in the four-GPU parallel processing mode. The RFSoC integrated design shows significant advantages in power consumption and electromagnetic radiation compared with discrete circuits according to the measurement results.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3