Large-scale Dynamics of Line-driven Winds with the Re-radiation Effect

Author:

Zhu YiORCID,Xie Jinsen

Abstract

Abstract Previous simulations studying winds only focus on the line force due to photons from central active galactic nuclei. What properties of the winds will be when including the re-radiation force due to the scattered and reprocessed photons (i.e., the re-radiation effect)? We perform simulations to study the large-scale dynamics of accretion disk winds driven by radiation line force and re-radiation force. For the fiducial run, we find that the re-radiation force drives stronger outflows during the early stages. When the flows get into the steadiness, the UV radiation due to spectral lines dominates total radiation and the re-radiation effect could be negligible. The opening angle of winds narrows as the initial gas density increases. The larger the gas density is, the stronger the re-radiation effect will be. For M BH = 106 M , ε = 0.3, the outflows do become much stronger with the re-radiation effect and the winds still cannot escape from gravitational potential. We find that the detection probability of ultra-fast outflows and the properties of the winds are both consistent with the observations.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3