Research on Ultra-wide Bandwidth Low-frequency Signal Channelization for Xinjiang 110 m Radio Telescope

Author:

Zhang Hai-Long,Zhang Ya-Zhou,Zhang Meng,Wang JieORCID,Li Jian,Ye Xin-Chen,Pei Xin

Abstract

Abstract Aiming at the subband division of ultra-wide bandwidth low-frequency (UWL) signal (frequency coverage range: 704–4032 MHz) of the Xinjiang 110 m QiTai radio Telescope (QTT), a scheme of ultra-wide bandwidth signal is designed. First, we analyze the effect of different window functions such as the Hanning window, Hamming window, and Kaiser window on the performance of finite impulse response (FIR) digital filters, and implement a critical sampling polyphase filter bank (CS-PFB) based on the Hamming window FIR digital filter. Second, we generate 3328 MHz simulation data of ultra-wideband pulsar baseband in the frequency range of 704–4032 MHz using the ultra-wide bandwidth pulsar baseband data generation algorithm based on the 400 MHz bandwidth pulsar baseband data obtained from Parkes CASPSR observations. Third, we obtain 26 subbands of 128 MHz based on CS-PFB and the simulation data, and the pulse profile of each subband by coherent dispersion, integration, and folding. Finally, the phase of each subband pulse profile is aligned by non-coherent dedispersion, and to generate a broadband pulse profile, which is basically the same as the pulse profile obtained from the original data using DSPSR. The experimental results show that the scheme for the QTT UWL receiving system is feasible, and the proposed channel algorithm in this paper is effective.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A sub-band division algorithm for ultra-wide bandwidth pulsar signals based on RFSoC;Frontiers in Astronomy and Space Sciences;2024-04-10

2. A Cross-matching Service for Data Center of Xinjiang Astronomical Observatory;Research in Astronomy and Astrophysics;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3