Hydrodynamical simulations of the triggering of nuclear activities by minor mergers of galaxies

Author:

Yang Chao,Ge Jun-Qiang,Lu You-Jun

Abstract

Abstract Major mergers of galaxies are considered to be an efficient way to trigger Active Galactic Nuclei and are thought to be responsible for the phenomenon of quasars. This has however recently been challenged by observations of a large number of low luminosity Active Galactic Nuclei at low redshift (z ≲ 1) without obvious major merger signatures. Minor mergers are frequently proposed to explain the existence of these Active Galactic Nuclei. In this paper, we perform nine high resolution hydrodynamical simulations of minor galaxy mergers, and investigate whether nuclear activities can be efficiently triggered by minor mergers, by setting various properties for the progenitor galaxies of those mergers. We find that minor galaxy mergers can activate the massive black hole in the primary galaxy with an Eddington ratio of f Edd > 0.01 and > 0.05 (or a bolometric luminosity >1043 and >1044 erg s−1) with a duration of 2.71 and 0.49Gyr (or 2.69 and 0.19Gyr), respectively. The nuclear activity of the primary galaxy strongly depends on the nucleus separation, such that the nucleus is more active as the two nuclei approach each other. Dual Active Galactic Nuclei systems can still possibly be formed by minor mergers of galaxies, though the time duration for dual Active Galactic Nuclei is only ∼ 0.011 Gyr and ∼ 0.017 Gyr with Eddington ratio of f Edd > 0.05 and bolometric luminosity >1044 erg s−1. This time period is typically shorter than that of dual Active Galactic Nuclei induced by major galaxy mergers.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3