Ensemble Numerical Simulations of Realistic SEP Events and the Inspiration for Space Weather Awareness

Author:

Du Chenxi,Ao Xianzhi,Luo BingxianORCID,Wang Jingjing,Chen Chong,Xiong Xin,Wang XinORCID,Li Gang

Abstract

Abstract The solar energetic particle (SEP) event is a kind of hazardous space weather phenomena, so its quantitative forecast is of great importance from the aspect of space environmental situation awareness. We present here a set of SEP forecast tools, which consists of three components : (1) a simple polytropic solar wind model to estimate the background solar wind conditions at the inner boundary of 0.1 AU (about 20 R ); (2) an ice-cream-cone model to estimate the erupted coronal mass ejection (CME) parameters; and (3) the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model to calculate particle fluxes and energy spectra. By utilizing the above models, we have simulated six realistic SEP events from 2010 August 14 to 2014 September 10, and compared the simulated results to the Geostationary Operational Environmental Satellites (GOES) spacecraft observations. The results show that the simulated fluxes of >10 MeV particles agree with the observations while the simulated fluxes of >100 MeV particles are higher than the observed data. One of the possible reasons is that we have adopted a simple method in the model to calculate the injection rate of energetic particles. Furthermore, we have conducted the ensemble numerical simulations over these events and investigated the effects of different background solar wind conditions at the inner boundary on SEP events. The results imply that the initial CME density plays an important role in determining the power spectrum, while the effect of varying background solar wind temperature is not significant. Naturally, we have examined the influence of CME initial density on the numerical prediction results for virtual SEP cases with different CME ejection speeds. The result shows that the effect of initial CME density variation is inversely associated with CME speed.

Publisher

IOP Publishing

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3